PROBLEM SET 08 - Connectivity.

Use the following notation for:

$\omega(G)$ - the number of connected componentes of G
$\kappa(G)$ - vertex connectivity of G (the size of a minimum vertex cut of G)
$\lambda(G)$ - edge connectivity of G (the size of a minimum edge cut of G)
Theorem 0.1. If $A=A(G)$ is the adjacency matrix of the graph G, then the entries of the matrix $A^{k}, k \in \mathbb{N}$, are equal to the number of walks of length k in G between the corresponding vertices.

Theorem 0.2. For any graph G

$$
\kappa(G) \leqslant \lambda(G) \leqslant \delta(G)
$$

1 Connectivity/paths/cycles

Exercise 1.1. Find all connected components of the graphs given below:

Exercise 1.2. Show that every connected graph with n vertices has at least $n-1$ edges.
Exercise 1.3. Find the number of connected components of the graphs G_{1} and G_{2} given by the following adjacency matrices:

$$
\text { a) } \quad A\left(G_{1}\right)=\left[\begin{array}{cc}
0 & A_{n \times m} \\
A_{m \times n} & 0
\end{array}\right], \quad \text { b) } \quad A\left(G_{2}\right)=\left[\begin{array}{cc}
B_{n} & 0 \\
0 & B_{m}
\end{array}\right] \text {. }
$$

where 0 represents a matrix consisting of 0 's only, $A_{k \times l}$ is a matrix with k rows and l columns consisting of 1 's only, and B_{k} has k rows and k columns with 0 's on the main diagonal and 1's beside that.

Exercise 1.4. Find the number of walks of length n between
i) two different vertices in K_{4},
ii) two different nonadjacent vertices in $K_{3,3}$,
iii) two adjacent vertices in $K_{3,3}$.
if n is
a) 2 ,
b) 3 ,
c) 4 ,
d) 5 .

Do it directly and using the adjacency matrix.
Exercise 1.5. Generalise the results obtained in the previous exercise, i.e. find the number of walks of length $k(k \geqslant 2)$ between
i) $\left({ }^{*}\right)$ two different vertices in K_{n},
ii) two different nonadjacent vertices in $K_{n, n}$,
iii) two adjacent vertices in $K_{n, n}$.

Exercise 1.6. Let A be the adjacency matrix of a graph G.
a) Using entries of A determine degrees of vertices and the number of edges in G.
b) Using entries of A^{2} determine degrees of vertices and the number of edges in G.
c) Using entries of A^{3} determine the number of C_{3} (triangles) in G.
d) (*) Using entries of A^{2} and A^{4} determine the number of copies of C_{4} in G.

Exercise 1.7. How many nonisomorphic connected simple graphs with n vertices are there if n is equal to
a) 2 ,
b) 3 ,
c) 4 ,
d) 5 .

Exercise 1.8. For each pair of graphs show that these graphs are not isomorphic or find an isomorphism between them.
a)

b)

G

G

H
d)

H

Exercise 1.9. Find all cut vertices and cut edges of the given graphs
a)

c)

Exercise 1.10. Find κ and λ for the following graphs:
a) $C_{n}, n \geqslant 4, \quad$ b) $W_{n}, n \geqslant 4$,
c) Q_{3}.

Exercise 1.11. Find $\kappa\left(K_{m, n}\right)$ and $\lambda\left(K_{m, n}\right)$, where m and n are positive integers.
Exercise 1.12. (*) Suppose that v is an endpoint of a cut edge. Prove that v is a cut vertex if and only if this vertex is not pendant.

Exercise 1.13. ${ }^{(*)}$ Show that a vertex c in a connected simple graph G is a cut vertex if and only if there are vertices u and v, both different from c, such that every path between u and v passes through c.

Exercise 1.14. $\left(^{*}\right)$ Show that a simple graph with at least two vertices has at least two vertices that are not cut vertices.
Exercise 1.15. (*) Show that an edge in a simple graph is a cut edge if and only if it doesn't belong to any cycle in that graph.

Exercise 1.16. $\left(^{*}\right)$ Show that a graph $G=(V, E)$ is connected if and only if for all $V^{\prime} \subseteq V$ such that $V \neq \emptyset$ and $V^{\prime} \neq V$ there is an edge with one end in V^{\prime} and the other in $V \backslash V^{\prime}$.

