PROBLEM SET 06 - Solving recurrence relations.

Consider a linear homogeneous recurrence relation

$$
\begin{equation*}
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}, \tag{1}
\end{equation*}
$$

where c_{1}, c_{2} are real numbers with $c_{1} \neq 0$. Let r_{1}, r_{2} be the roots of the characteristic equation

$$
r^{2}-c_{1} r-c_{2}=0
$$

If $r_{1} \neq r_{2}$, then all the solutions of (1) are of the form

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n},
$$

where α_{1}, α_{2} are constants, while for $r_{1}=r_{2}$ the solutions of (1) are of the form

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} n r_{1}^{n} .
$$

Similarly, for a linear homogeneous recurrence relation

$$
\begin{equation*}
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+c_{3} a_{n-3} \tag{2}
\end{equation*}
$$

with $c_{1} \neq 0$ and three roots r_{1}, r_{2}, r_{3} of the characteristic equation

$$
r^{3}-c_{1} r^{2}-c_{2} r-c_{3}=0,
$$

if all the roots are distinct then the solutions of (2) are of the form

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} r_{2}^{n}+\alpha_{3} r_{3}^{n},
$$

if $r_{1}=r_{2} \neq r_{3}$, then the solutions of (2) are of the form

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} n r_{1}^{n}+\alpha_{3} r_{3}^{n},
$$

while for $r_{1}=r_{2}=r_{3}$, the solutions of (2) are given by

$$
a_{n}=\alpha_{1} r_{1}^{n}+\alpha_{2} n r_{1}^{n}+\alpha_{3} n^{2} r_{1}^{n}
$$

Next, consider a linear nonhomogeneous recurrence relation

$$
\begin{equation*}
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}+f(n) \tag{3}
\end{equation*}
$$

and let $a_{n}^{(1)}$ be a solution of the linear homogeneous recurrence relation

$$
\begin{equation*}
a_{n}=c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k} . \tag{4}
\end{equation*}
$$

Then, the solution of (3) is of the form $a_{n}=a_{n}^{(1)}+a_{n}^{(2)}$. In some cases we can guess the form of $a_{n}^{(2)}$:

- if $f(n)$ is a polynomial od degree d and 1 is not a root of the characteristic equation of (4), then $a_{n}^{(2)}$ a polynomial of degree d,
- if $f(n)$ is a polynomial od degree d and 1 is a root of the characteristic equation of (4) of rank k, then $a_{n}^{(2)}$ a polynomial of degree $d+k$,
- if $f(n)=C \beta^{n}$ and β is not a root of the characteristic equation of (4), then $a_{n}^{(2)}=A \beta^{n}$,
- if $f(n)=C \beta^{n}$ and β is a root of the characteristic equation of (4) of rank k, then $a_{n}^{(2)}=A n^{k} \beta^{n}$.

1 Linear homogeneous recurrence relations

Exercise 1.1. Find the solutions of the following recurrence relations.
a. $a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geqslant 2, a_{0}=1, a_{1}=0$
b. $a_{n}=4 a_{n-1}-4 a_{n-2}$ for $n \geqslant 2, a_{0}=6, a_{1}=8$
c. $a_{n}=-4 a_{n-1}-4 a_{n-2}$ for $n \geqslant 2, a_{0}=0, a_{1}=1$
d. $a_{n}=4 a_{n-2}$ for $n \geqslant 2, a_{0}=0, a_{1}=4$
e. $a_{n}=a_{n-1}+6 a_{n-2}$ for $n \geqslant 2, a_{0}=3, a_{1}=6$
f. $a_{n}=-6 a_{n-1}-9 a_{n-2}$ for $n \geqslant 2, a_{0}=3, a_{1}=-3$

Exercise 1.2. Find the solution to $a_{n}=2 a_{n-1}+a_{n-2}-2 a_{n-3}$ for $n=3,4,5, \ldots$, with $a_{0}=3, a_{1}=6$, and $a_{2}=0$.
Exercise 1.3. Find the solution to $a_{n}=7 a_{n-2}+6 a_{n-3}$ for $n=3,4,5, \ldots$, with $a_{0}=9, a_{1}=10$, and $a_{2}=32$.
Exercise 1.4. Find the solution to $a_{n}=2 a_{n-1}+5 a_{n-2}-6 a_{n-3}$ for $n=3,4,5, \ldots$, with $a_{0}=7, a_{1}=-4$, and $a_{2}=8$.

2 Linear nonhomogeneous recurrence relations

Exercise 2.1. Find the solutions of the following recurrence relations.
a. $a_{n}=a_{n-1}+7 n, a_{0}=0$;
b. $a_{n}=-6 a_{n-1}-9 a_{n-2}+3, a_{0}=0, a_{1}=1$;
c. $a_{n}=4 a_{n-1}-4 a_{n-2}+2^{n}, a_{0}=2, a_{1}=2$;
d. $a_{n+1}=2 a_{n}-1, a_{0}=3$;
e. $a_{n}=a_{n-1}+n^{3}, a_{0}=0$.

3 Solving complex recurrence relations

Exercise 3.1. Find the solutions of the following recurrence relations.
a. $a_{n}^{2}=2 a_{n-1}^{2}+1, n \geqslant 1, a_{0}=2$ assuming that $a_{n} \geqslant 0$, for all n;
b. $a_{n}^{2}=2 a_{n-1}, n \geqslant 1, a_{0}=4$, assuming that $a_{n}>0$, for all n;
c. $a_{n}=\frac{1-n}{n} a_{n-1}+\frac{1}{n} 2^{n}, n \geqslant 1, a_{0}=3456$;
d. $a_{n}=n a_{n-1}+n!, n \geqslant 1, a_{0}=2$.

4 Hints and solutions

Ex. 1.1 a. $a_{n}=3 \cdot 2^{n}-2 \cdot 3^{n}$
b. $a_{n}=2^{n+1}(3-n)$
c. $a_{n}=n(-2)^{n-1}$
d. $a_{n}=2^{n}-(-2)^{n}$
e. $a_{n}=\frac{12}{5} \cdot 3^{n}+\frac{3}{5} \cdot(-2)^{n}$
f. $a_{n}=(3-2 n)(-3)^{n}$

Ex. $1.2 a_{n}=-2^{n}-2 \cdot(-1)^{n}+6$
Ex. $1.3 a_{n}=(-3)^{n}+5 \cdot 2^{n}+3$
Ex. $1.4 a_{n}=3 \cdot(-2)^{n}-3^{n}+5$
Ex. 2.1 a. $a_{n}=\frac{7}{2}\left(n^{2}+n\right)$
b. $a_{n}=(-3)^{n}\left(-\frac{1}{12} n-\frac{3}{16}\right)+\frac{3}{16}$
c. $a_{n}=(2-n) 2^{n}$
d. $a_{n}=2^{n+1}+1$
e. $a_{n}=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} n^{2}$

Ex. 3.1 a. $a_{n}=\sqrt{5 \cdot 2^{n}-1}$
b. $a_{n}=2 \cdot 2^{\left(\frac{1}{2}\right)^{n}}$
c. $a_{2 n-1}=\frac{2\left(2^{2 n-1}+1\right)}{3(2 n-1)}, a_{2 n}=\frac{2^{2 n}-1}{3 n}, n \geqslant 1$
d. $a_{n}=n \cdot n$!

